A viral chitinase enhances oral activity of TMOF

Luisa Fiandra a, Irma Terracciano b, Paolo Fanti c, Antonio Garonna d, Lia Ferracane e, Vincenzo Fogliano e, Morena Casartelli a, Barbara Giordana a, Rosa Rao b, Francesco Pennacchio d,*

a Dipartimento di Biologia, Università di Milano, Milano, Italy
b Dipartimento di Scienze del Suolo, dell’Pianta, dell’Ambiente e delle Produzioni Animali, Università di Napoli “Federico II”, Portici, Italy
c Dipartimento di Scienze del Suolo, dell’Pianta, dell’Ambiente e delle Produzioni Animali, Università di Napoli “Federico II”, Portici, Italy
d Dipartimento di Biologia, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
e Dipartimento di Scienze del Suolo, dell’Pianta, dell’Ambiente e delle Produzioni Animali, Università di Napoli “Federico II”, Portici, Italy

A B S T R A C T

In this study we investigated the combined effect on Heliothis virescens (Lepidoptera, Noctuidae) larvae of Aedes aegypti-Trypsin Modulating Oostatic Factor (Aea-TMOF), a peptide that inhibits trypsin synthesis by the gut, impairing insect digestive function, and Autographa californica nucleopolyhedrovirus Chitinase A (AcMNPV ChiA), an enzyme that is able to alter the permeability of the peritrophic membrane (PM). Aea-TMOF and AcMNPV ChiA were provided to the larvae by administering transgenic tobacco plants, co-expressing both molecules. Experimental larvae feeding on these plants, compared to those alimented on plants expressing only one of the two molecules considered, showed significantly stronger negative effects on growth rate, developmental time and mortality. The impact of AcMNPV ChiA on the PM of H. virescens larvae, measured as increased permeability to molecules, was evident after five days of feeding on transgenic plants expressing ChiA. This result was confirmed by in vitro treatment of PM with recombinant ChiA, extracted from the transgenic plants used for the feeding experiments. Collectively, these data indicate the occurrence of a positive interaction between the two transgenes concurrently expressed in the same plant. The hydrolytic activity of ChiA on the PM of tobacco budworm larvae enhances the permeation of TMOF molecules to the ectoperitrophic space, and its subsequent absorption. The permeation through the paracellular route of Aea-TMOF resulted in a spotted accumulation on the basolateral domain of enterocytes, which suggests the occurrence of a receptor on the gut side facing the haemocoel. The binding of the peptide, permeating at increased rates due to the ChiA activity, is considered responsible for the enhanced insecticide activity of the transgenic plants expressing both molecules. These data corroborate the idea that ChiA can be effectively used as gut permeation enhancer in oral delivery strategies of bioinsecticides targeting haemocoelic receptors.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The reduction of chemical insecticide use is one of the major issues for safe food production. The importance of this objective in modern agriculture has fostered significant research efforts towards the development of innovative technologies based on the use of biological control agents (Bale et al., 2008), natural insecticides, which include small organic molecules (Dayan et al., 2009) and peptide or protein toxins, deriving from plants and insect natural antagonists (Whetstone and Hammock, 2007).

The success and safety of pest management technologies largely depends on the efficacy of the delivery methods used to distribute the insecticide molecules in the environment. When dealing with peptide/protein toxins, the choice of the most appropriate delivery vector is directed by the localization of the receptor to be targeted, which can be in the gut or behind the gut wall. The delivery of biopesticides through oral ingestion, for example by transgenic plant expression, is considered more appropriate for molecules exerting their activity in the gut, while those targeting haemocoelic receptors are more efficiently delivered via insect-specific symbionts and pathogens (Inceoglu et al., 2006; Whetstone and Hammock, 2007). This conceptual dichotomy is largely motivated by the assumption that most macromolecules are unable to pass across the gut barrier in significant amounts, but can easily cross it if expressed in recombinant baculoviruses (Liu et al., 2006). However, a growing number of exceptions to this assumption can be found in the literature, with cases of parasitoid (Maiti et al., 2003) and predator derived toxins (Liu et al., 2006), which have...
conferred a significant protection level when expressed in transgenic plants. However, none of these studies provided direct evidence that the toxins passed from the gut lumen to the haemocoel of the target insects (reviewed in Liu et al., 2006), even though they indirectly indicated that gut absorption of macro-molecules in insects is likely possible and of practical value for pest control. The possibility of delivering intrahaemocoelic toxins with food opens very interesting new perspectives in the field of biotechnology for insect control, and is certainly worthy of further research efforts.

In spite of these promising perspectives, the study of the physiological mechanisms mediating the absorption of macro-molecules in the insect gut has received limited attention (Jefferees and Roe, 2008). Over the last few years, we have contributed to this research area, by focusing our interest on the absorption pathways of peptides and proteins in the midgut of lepidopteran larvae, demonstrating that the paracellular route (Fiandra et al., 2006) is mostly exploited by small peptides (Fiandra et al., 2009), while transcytosis is the main route of entrance for proteins (Casartelli et al., 2005, 2007). The absorption pathway of peptides can be modulated by manipulating the intracellular concentration of cAMP and Ca++ (Fiandra et al., 2006); the ligand specificity of the receptor involved in the internalization of albumin can be exploited for promoting the uptake of fusion proteins, bearing toxic domains along with domains which are involved in the receptor-mediated endocytosis (Casartelli et al., 2008). This information provides the background on which new strategies for enhancing the rate of gut absorption can be developed.

However, the gut epithelium is only one of the two major intestinal barriers to be crossed by ingested macromolecules, and the peritrophic membrane (PM) represents the first physical layer with pores that discriminates the passage of large molecules (Lehane, 1997; Barbehenn, 2001). In Bombyx mori larvae, for instance, the PM was largely permeable to methylene blue, a molecule with a molecular mass of 320 Da, and almost impermeable to PEG 4000, while the Trypsin Modulating Oostastic Factor from Aedes aegypti (Aea-TMOF) had an intermediate permeability coefficient, in line with its molecular mass (1005 Da) (Fiandra et al., 2009). Therefore, the structural disruption of the PM can facilitate the passage of molecules, as naturally occurs in the case of infection by baculoviruses, which use specific metalloproteases for disrupting the peritrophic membrane, to allow the contact of viral particles with midgut epithelial cells (Slavicek and Popham, 2005; Liu et al., 2006).

In the framework of a coordinated effort towards the development of new delivery strategies and combinations of bionsecticides, we discovered that the Chitinase A (ChiA) of Autographa californica nucleopolyhedrovirus (AcMNPV), which has a key-role in the post-mortem liquefaction of the infected larval host cadaver (Bonning, 2005), determined structural alterations on lepidopteran larvae PM (Rao et al., 2004), and had a significant negative effect on insect biological performance and survival when the recombinant protein was delivered either with artificial diet or with transgenic plants (Rao et al., 2004; Corrado et al., 2008). The same studies also clearly showed a strong increase of the permeability to molecules of the PMs treated in vitro with ChiA. These results stimulated the idea of using ChiA in combination with Aea-TMOF, which targets receptors expressed in the basolateral membrane of epithelial midgut cells and causes the inhibition of trypsin synthesis, thus impairing the insect digestive processes (Borovsky et al., 1994; Nauen et al., 2001; Borovsky and Meola, 2004). Aea-TMOF exerts mild insecticidal activity on Heliothis virescens larvae when expressed in transgenic tobacco plants (Tortiglione et al., 2002, 2003), and negatively interferes with larval growth of the tobacco budworm (H. virescens), when fused to Tobacco Mosaic Virus coat protein (Borovsky et al., 2006).

In this study we demonstrate that tobacco plants co-expressing both Aea-TMOF and AcMNPV ChiA show a significantly stronger impact than parental lines, expressing only one of the two genes, on the development and survival of the tobacco budworm larvae, which is associated with a higher permeability to Aea-TMOF of the peritrophic membrane of larvae fed on transgenic plants. This corroborates the hypothesis that the use in tandem of gut permeating agents and insecticide molecules targeting haemocoelic receptors can result in a more efficient insect control activity, as a consequence of functional complementation of the molecules used and reduced risk of resistance in the target population.

2. Material and methods

2.1. Production of hybrid tobacco plants co-expressing AcMNPV ChiA and polyTMOF

Transgenic tobacco plants constitutively expressing the poly-TMOF synthetic gene (line R1-Z) and ChiA gene (ChiA HDEL line 9) were obtained as reported in Tortiglione et al. (2002) and Corrado et al. (2008), respectively. Both transgenic lines were screened for resistance to kanamycin on Murashige Skooge medium, supplemented with 100 mg/l kanamycin, and then transferred to soil and grown under containment glass house conditions. Crosses of the two transgenic lines originated tobacco genotypes co-expressing both genes, ChiA and polyTMOF, which, for simplicity reasons, are hereafter denoted as hybrids.

2.2. Molecular characterization of tobacco hybrid genotypes

The presence of both polyTMOF and ChiA mRNA in the tobacco hybrids was detected by Northern blot, with the appropriate cDNA probes, as previously described (Tortiglione et al., 2002; Corrado et al., 2008).

Furthermore, the expression of the ChiA protein was monitored by Western blot. Total proteins were isolated from leaves, quantified and resolved by SDS-PAGE (Sambrook et al., 1989). Western analysis was carried out on 40 μg of water soluble proteins, using as primary antibody the anti-nych (Santa Cruz Biotechnology, CA), diluted 1:500, and anti-rabbit IgG conjugated with horseradish peroxidase, diluted 1:2000, as secondary antibody, according to the procedures already published (Corrado et al., 2008).

2.3. ChiA purification from tobacco transgenic plants

The recombinant ChiA protein was purified from transgenic tobacco leaves as described in Di Maro et al. (2010). The enzymatic activity of the isolated protein was assayed using the substrate 4-methyl-umbelliferyl-β-D-N-4-N′-acyetyl-chitotriose [4MU (GlcNAe)3], Sigma–Aldrich, Italy] for the detection of endo-chitinolytic activity, as reported elsewhere (McCreath and Gooday, 1992; Rao et al., 2004). Briefly, for the ChiA protein purification procedure, leaves were homogenized in 1× PBS, in presence of EDTA 5 mM, PMSF 1 mM and PVP-40 1.5%, by 20 s bursts at full power using a Waring Blender (Waring Products, CT, USA). The proteins were subjected to ammonium sulfate precipitation, followed by ion exchange and gel filtration chromatography. The purification was monitored by analyzing the chromatography fractions by SDS-PAGE and Western blot.

ChiA, separated by SDS-PAGE, was transferred onto PVDF membrane and directly subjected to Edman degradation on a Procise Model 491 sequencer (Applied Biosystems), for N-terminal sequencing, as previously described (Di Maro et al., 2001).
2.4. Feeding bioassay on transgenic plants

The insecticidal activity of transformed tobacco plants was assayed in vivo on larvae of the tobacco budworm H. virescens. Selected transformants expressing either the TMOF peptide (line polyTMOF R1-2) or ChiA (line ChiA HDEL 9) or both of them and control plants (NN) were daily supplied as leaf disks to newly hatched larvae. Experimental larvae were singly maintained at 29 ± 1 °C, in multiwell plastic trays, bottom lined with a thin layer of a 2% agar solution and closed with transparent plastic covers provided by the commercial supplier (CD International). Two different well sizes were used: 4 × 4 × 2 cm (for instars 1st–4th) (CD International BIO-RT-32) and 8 × 8 × 2 (for 5th instars) (CD International BIO5MRT-8). Larvae were weighed every other day, starting on day 4 from the beginning of the bioassay. Mortality was daily checked during the whole larval feeding period. In each of the 4 replicate, 16 larvae were assayed for each treatment.

The larval development was compared by combining the larval growth and survival into a single parameter, the total larval biomass, calculated every other day, as the sum of the weight of the surviving larvae in each treatment. The growth curves of the larval biomass of individuals fed on control or transformed plants were compared by Repeated Measures Analysis of Variance (Sokal and Rohlf, 1995). The interaction of diet and the within-factor time was tested using linear, quadratic and cubic order polynomial contrasts, in order to assess differences in the slope of the growth curves. Compound symmetry was checked by Huynh-Feldt statistics (Systat 12, Systat Software Inc.).

Developmental times and survival rates were analyzed by One-Way Analysis of Variance, and mean comparison (Tukey’s test) was performed when statistical significance (α = 0.05) occurred. Percentages were arcsine transformed before analysis (Zar, 2009).

Mean percentages presented in figures were transformed back into proportions after analysis. Because the confidence limits are not symmetrical about the means when expressed again in proportions, in the result section we report the mean values and the mean values plus and minus the SE.

All data analyses were performed with the statistical package Systat 12 (Systat Software Inc.).

2.5. Evaluation of the peritrophic membrane permeability

To assess the impact of feeding on transgenic plant lines, experimental larvae of H. virescens, fed with artificial diet until the end of the third instar, were divided into four groups of 16 larvae each and then reared from the first day of the fourth instar on the following tobacco genotypes: NN, polyTMOF R1-2, ChiA HDEL 9 and hybrids. Their survival and body weight were monitored during the fifth instar at 120, 132 and 144 hours since the beginning of treatment. After 132 h, randomly selected larvae from each experimental group were used to study in vitro the permeability of their peritrophic membrane. The PM was isolated as described in detail in Rao et al. (2004). Briefly, the PM was carefully extracted from the dissected midgut, and cut longitudinally on a thin cotton gauze, which maintained the PM extended, avoiding its uttering.

The PMs were explanted from experimental larvae fed on different plant lines were incubated for 90 min, in the presence of 1 mg/ml methylene blue in the endoperitrophic compartment. The total amount of dye diffused to the ectoperitrophic compartment was collected and determined spectrophotometrically (Ultrspec 3000 Pharmacia Biotech, Cambridge, UK), at the wavelength of 661 nm. A calibration curve was carried out with known amounts of the molecule dissolved in the incubation buffer.

To demonstrate that the increased permeability was due to AcMNPV ChiA produced by transgenic plants, this enzyme, extracted and purified from ChiA HDEL 9 genotypes, was used in PM permeability assays to TMOF. PMs were explanted from larvae continuously reared on artificial diet. The flux of TMOF (synthesized by GenScript Corporation, USA) was measured by adding the peptide (1 mg/ml) to the endoperitrophic compartment in the absence (control) or in the presence of 40 µg/ml ChiA and by recovering the solution in the eptoperitrophic compartment after 90 min of incubation. The amount of permeated TMOF, detected by Zonal Capillary Electrophoresis (Beckman Coulter P/ACE MDQ Capillary System), was determined using a suitable calibration curve.

The calculated methylene blue and TMOF flux values were expressed as nmol/cm²/h. Mean values were compared by Student’s t test.

2.6. Detection of TMOF in the haemolymph of experimental larvae

Experimental larvae fed for 132 h on polyTMOF R1-2 and hybrid tobacco genotypes, as described in the previous section, were used for haemolymph collection. Fifty µl of haemolymph, collected from the cut proleg of 5 larvae using capillary glass tubes, were diluted 1:10 in methanol and stored at −20 °C. Samples to be analyzed were centrifuged at 4000 rpm for 10 min and cleaned up on a reversed phase Strata C18-E 500 mg cartridge (Phenomenex, Torrance, CA, USA). A volume of 500 µl was loaded on the cartridge, previously conditioned with methanol (3 ml) and water (3 ml). The column was then washed with water (3 ml), and eluted with 3 ml of pure methanol. The eluate was dried under a gentle nitrogen stream, dissolved in 50 µl of methanol, centrifuged at 12,000 rpm for 3 min and used for liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) analyses. Chromatographic separation was obtained using an HPLC apparatus, equipped with two Micropumps Series 200 (Perkin Elmer, Shelton, CT, USA), a UV/VIS detector series 200 set at 220 nm and an Aquaprep RP300 C8, 7 µm 220 × 2.1 mm column (Brownlee, CT). The eluents were: A: H2O, 0.1% formic acid; B: CH3CN, 0.1% formic acid. The gradient program was as follows: 0–50% B (13 min), 50–100% B (3 min), 100% B (4 min), 100–0% B (5 min) at a constant flow of 0.2 ml/min. Injection volume was 20 µl and all samples were centrifuged, before the analysis, at 12,000 rpm for 3’ using a centrifuge 5415R (Eppendorf, Germany).

MS and MS/MS analyses were performed on an API 3000 triple quadrupole mass spectrometer (Applied Biosystems, Canada), equipped with a TurbolonSpray. Acquisition was in positive ion mode, in MRM (Multiple Reaction Monitoring). The analyses were performed using the following settings: drying gas (air) was heated to 350 °C, capillary voltage (IS) was set at 5500 V. The declustering potential (DP), focus potential (FP) and the collision energy (CE) were optimized infusing directly into the mass spectrometer a TMOF peptide standard solution (10 µg/ml) at a constant flow rate of 6 µl/min using a model 11 syringe pump (Harvard Apparatus, Holliston, MA, USA). The detection limit (LOD) with a signal to noise ratio of 3) was 2 ng/ml. TMOF peptide showed an [M + H]+ ion at m/z 1047.6 and a [M + 2H]2+ ion at m/z 524.6. The LC/MS/MS characteristics of TMOF are reported in Table 1.

The recovery of TMOF was about 100% and was assessed by spiking a sample of haemolymph with a solution of standard TMOF, at a final TMOF concentration of 22 ng/ml.
2.7. Incubation of larval midguts in Ussing chambers and fluorescence analysis of FITC-TMOF in whole mount tissues

Larvae reared on the artificial diet were sacrificed on the second day of the last instar, and the midgut, deprived of the peritrophic membrane, was mounted as a sheet in the Ussing chambers, as previously described (Fiandra et al., 2006). Tissues were perfused with 2.5 ml of the following physiological solution (in mM): 5 CaCl₂, 24 MgSO₄, 20 Kgluconate, 190 sucrose and 5 Tris adjusted to pH 7 in the haemolymph compartment, or 5 CAPS adjusted to pH 10 in the luminal one. The solutions, connected via Ag–AgCl voltage electrodes in series with agar bridges (3 M KCl, 5.5% Agar) to a voltmeter for the measurement of the transepithelial voltage (Vₑ), were circulated by gas influx (100% O₂) and maintained at 25 °C in water-jacketed reservoirs.

One hundred thirty µM of FITC-TMOF (GenScript Corporation, USA) was added to the luminal solution, which contained a cocktail with the following peptidase inhibitors: 1 mM 1-phenanthroline, 10 µM bestatin and 10 µM amastatine (Sigma–Aldrich, Italy). After 2 h of incubation, the midgut was removed from the Ussing chambers, washed five times with the physiological solution and fixed for 30 min in 4% paraformaldehyde. After further five rinsing in PBS, the samples were mounted in DABCO (Sigma)-Mowiol (Calbiochem). The tissues covered with a coverslip were examined with a confocal laser scanning microscope imaging system (CLSM TCS SP2 A0BS- Leica Microsystems, Heidelberg, GmbH, Germany), equipped with an argon-krypton laser and an UV laser.

3. Results

3.1. Production and characterization of tobacco plants co-expressing ChiA protein and polyTMOF peptide

Tobacco plants co-expressing ChiA and TMOF peptides, obtained by crossing the two parental transformants, were subjected to Northern blot analysis, to monitor the expression of the two transgenes. The hybridization of the total RNA extracted from the hybrids showed the presence of both transcripts of the expected size, in 5 out of the 10 hybrids analyzed (Fig. 1A). The presence of the two bands, one of 0.4 kb (polyTMOF transcript) and the other of 2 kb (ChiA transcript), separately present in the parental lines and absent in the control plants, confirmed the success of the hybridization between transgenic lines. The presence of the recombinant ChiA protein in the hybrids was showed by Western blot (Fig. 1B). A single band, with an estimated molecular mass of 60 kDa, was detected in all the lines where the ChiA gene was actively transcribed. The immunodetection of TMOF was not performed, for the technical reasons already discussed elsewhere (Tortiglione et al., 2002).

3.2. Biological performance and survival of H. virescens larvae fed on transformed tobacco plants

We compared the larval development by combining the growth and survival into a single parameter, the total experimental biomass, which, after the maximum larval weight was attained, included also the weight of the pupae. The effect of the experimental conditions considered on this parameter is shown in Fig. 2. The mean total experimental biomass obtained on the transformed and control plants was different in a highly significant way (analyzed with Repeated Measures ANOVA until day 10: F = 8.824; df 3, 12; p = 0.002). The interaction between diet and time was also highly significant (F = 8.802; df 9, 36; p < 0.001), indicating that the...
pattern of the total biomass growth curves obtained with transgenic and control tobacco plants were significantly different. Polynomial contrasts showed that the linear ($F = 10.731$; df 3, 12; $p = 0.001$) and quadratic ($F = 5.327$; df 3, 12; $p = 0.014$) components accounted for the differences among the curves. The lowest value of total biomass growth curve was registered for the experimental larvae fed on the hybrid transformed plants. On day 8, the total biomass of the larvae fed on control plants was significantly higher than the total biomass of both ChiA HDEL 9 and hybrid fed larvae (Tukey’s test, $\alpha = 0.05$). On day 10, the total biomass of larvae fed on control plants was significantly higher than that registered for all the other three experimental groups (Tukey’s test, $\alpha = 0.05$).

The mean time to the completion of development, until the adult emergence, also differed significantly ($F = 5.949$; df 3, 122; $p = 0.001$) among the different experimental treatments, as well as the pre-adult mortality rate (Table 2) ($F = 8.175$; df 3, 12; $p = 0.003$). Larvae fed on the hybrid transformed lines showed significantly longer development compared to control, and also a significantly lower survival rate (Tukey’s test, $\alpha = 0.05$).

3.3. Peritrophic membrane permeability affected by ChiA ingestion

To demonstrate that feeding of tobacco budworm larvae on transgenic plants expressing ChiA enhances the permeability of PM, we determined in vitro the flux of methylene blue through the PMs isolated from larvae reared on the different plant genotypes, starting from the first day of the fourth instar. The reduction of the rearing time on transgenic plants was motivated by the need of newly moulted fourth instars, on the tobacco genotypes NN (control), ChiA HDEL 9 or polyTMOF R1-2 tobacco genotypes. Mean ± SEM of at least 3 replicates. Student’s t-test vs control ($^*P < 0.05$).

The permeability of the PMs was measured in fifth instar larvae fed on the experimental leaves for 132 h, because at this time of development the dimensions of the PM were wide enough to avoid any leakage between the two compartments in the Ussing chambers. The experiments could not be performed with larvae fed on the hybrid plants because the PM was too small. The PMs were incubated in the presence of methylene blue in the endoperitrophic compartment: this dye is a reliable and easily quantified tracer of PM permeability (Rao et al., 2004; Corrado et al., 2008; Fiandra et al., 2009). Fig. 3 shows that the flux of methylene blue was significantly higher than that of controls in larvae reared on ChiA-expressing tobacco plants, whereas, as expected, the flux across the PMs explanted from larvae fed with the polyTMOF R1-2 line did not differ from that of controls.

To demonstrate that the increased permeability was due to the hydrolytic activity of AcMNPV ChiA on the PM chitin mesh, this enzyme was extracted and purified from ChiA HDEL 9 genotypes and its activity tested on the permeability of PMs of control larvae isolated in Ussing chambers. Fig. 4 shows that PM incubation with 40 μg/ml ChiA in the endoperitrophic compartment caused a significant increase of TMOF flux compared to control.

Table 2

<table>
<thead>
<tr>
<th>Leaf-disks fed</th>
<th>Developmental time (Mean ± SEM)</th>
<th>Survival Mean Percentage (+SEM to -SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td>23.44 ± 0.26 a</td>
<td>75.27 ± 8.9 (81.48 – 68.47)</td>
</tr>
<tr>
<td>PolyTMOF R1-2</td>
<td>24.19 ± 0.31 ab</td>
<td>50.08 ± 6.7 (57.62 – 42.54)</td>
</tr>
<tr>
<td>ChiA HDEL 9</td>
<td>24.58 ± 0.32 b</td>
<td>48.51 ± 6.4 (56.07 – 40.99)</td>
</tr>
<tr>
<td>Hybrids</td>
<td>25.47 ± 0.46 b</td>
<td>24.74 ± 6.1 (31.53 – 18.52)</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Larval weight of Heliothis virescens larvae 120, 132 and 144 h after they started to feed, as newly moulted fourth instars, on the tobacco genotypes</th>
<th>120 h</th>
<th>132 h</th>
<th>144 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN (control)</td>
<td>0.20 ± 0.01 (16)</td>
<td>0.22 ± 0.01 (16)</td>
<td>0.23 ± 0.01 (10)</td>
</tr>
<tr>
<td>ChiA HDEL 9</td>
<td>0.22 ± 0.01 (14)</td>
<td>0.24 ± 0.02 (14)</td>
<td>0.23 ± 0.02 (8)</td>
</tr>
<tr>
<td>PolyTMOF R1-2</td>
<td>0.22 ± 0.01 (16)</td>
<td>0.24 ± 0.01 (16)</td>
<td>0.20 ± 0.01* (10)</td>
</tr>
<tr>
<td>Hybrid</td>
<td>0.16 ± 0.01 (13)</td>
<td>0.19 ± 0.01 (13)</td>
<td>0.20 ± 0.03 (7)</td>
</tr>
</tbody>
</table>

Symbols indicate significant differences by Student’s t-test: ‘*P < 0.05; ‘"p < 0.01 vs. corresponding control for each experimental time.
3.4. Detection of TMOF in the haemolymph of the experimental larvae

The analysis of haemolymph, collected 132 h after the onset of feeding on experimental plants, showed that TMOF was undetectable in all samples.

3.5. In vitro distribution of permeating FITC-TMOF within the midgut epithelium

The biological effects of TMOF recorded on tobacco budworm larvae (Nauen et al., 2001; Tortiglione et al., 2002), enhanced by ChiA as here reported, and the apparently contradictory absence of a detectable amount of TMOF in the haemolymph of affected larvae, prompted us to further investigate the TMOF fate after ingestion. TMOF receptors in mosquitoes are located on the basolateral plasma membrane of the midgut epithelium (Borovsky et al., 1994): if similar receptors were also present in H. virescens, the observed biological effects could be explained by the capture of the low permeating amounts, which are, then, prevented from reaching the haemolymph. We have shown that TMOF permeability across the midgut is very low and most part of its transfer takes place by diffusion through the paracellular route across the septate junction (Fiandra et al., 2009). The enrichment in this microenvironment of TMOF promoted by ChiA could more easily exert a detectable effect if the target receptors were located nearby. To assess this, we observed the distribution of FITC-TMOF molecules permeating in vitro a perfused midgut, looking for the possible occurrence of discrete signals on the plasma membrane, which would be indicative of a specific interaction with a putative receptor.

The midguts of last instar larvae, isolated in Ussing chambers, were incubated for two hours in the presence of 130 μM FITC-TMOF in the luminal compartment. The tissues, rapidly rinsed and immediately fixed to preserve the distribution of the peptide in the intercellular spaces (Fiandra et al., 2009), were observed as whole mounts by confocal microscopy. The acquisition of a single optical section at the junctional level of the epithelium (Fig. 5A) revealed that FITC-TMOF was extensively localized in the paracellular space and, therefore, permeated across the epithelium by this route. An optical section acquired at a deeper plane of the tissue (Fig. 5B) confirmed the intercellular localization of the peptide and showed intense fluorescent dots around the cells, suggesting binding of the peptide to specific sites in the basolateral membrane of the epithelial cell. Numerous spots of FITC-TMOF molecules associated with the basolateral membranes were even more evident in a more basal optical section (Fig. 5C) in this section, the freely dispersed fluorescent TMOF molecules had already left the basal intercellular spaces, so that only the bound peptides were apparent as spots on the cell surface.

4. Discussion

In recent decades, a number of research efforts have been focused on the identification and use of new bioinsecticide molecules (Whetstone and Hammock, 2007; Dayan et al., 2009), in response to the growing demand from public opinion for new production protocols in agriculture less dependent on the use of chemical insecticides. The use of biocontrol agents and their possible integration with transgenic plants appears a very promising alternative (Bale et al., 2008). Moreover, the study of the molecular bases of the interactions between insects and their natural antagonists represents a very attractive possibility for the isolation of new molecules and genes for insect control (Beckage and Gelman, 2004; Pennacchio and Strand, 2006; Ferry et al., 2006;
this study show that the hydrolytic activity of ChiA on the PM of tobacco budworm larvae enhances the permeation of TMOF molecules, increasing the hormone concentration in the ectoperitrophic space, in direct contact with the intestinal epithelium. The experiments performed in vitro demonstrate that the incubation of larval PM with ChiA extracted from transgenic tobacco does increase the diffusion of TMOF across the membrane to the ectoperitrophic compartment (Fig. 4). The chitinolytic effect was also observed in the PMs of larvae reared on the ChiA-expressing tobacco line, as demonstrated by the higher flux of the test molecule methylene blue through the isolated membranes (Fig. 3).

Among the numerous peptides which were isolated and characterized in the last three decades, Aea-TMOF appeared of particular interest, as it targets the gut of mosquitoes, by inhibiting trypsin synthesis, through the interaction with a receptor localized on the haemolymphatic side of the gut epithelium (Borovsky et al., 1994). Moreover, the same molecule is also active on H. virescens larvae (Nauen et al., 2001), even when expressed in transgenic plants (Tortiglione et al., 2002, 2003). The strategy pursued in these latter studies was to deliver in the gut, with different constructs, a TMOF precursor made of multiple peptide units, spaced by dibasic residues, Arg→Arg, as potent post-translational cleavage site. The significant impact on biological performance and survival of H. virescens fed on these transgenic plants corroborated the validity of the expression approach proposed, which, in principle, could be applied to any other peptide to be used for insect control. However, the mild effects observed in terms of mortality, further corroborated by the negative impact on the growth of tobacco budworm larvae which ingested TMOF fused with the coat protein of the tobacco mosaic virus (Borovsky et al., 2006), suggested the idea of combining this transgene with others capable to hit different functional targets, possibly exerting a synergistic interaction.

Among the different alternative available, we decided to focus our attention on AcMNPV ChiA, which proved to be active, upon ingestion, in lepidopteran larvae, by disrupting the peritrophic membrane and increasing its permeability (Rao et al., 2004). This determined direct negative effects (i.e. developmental alterations, mortality) on the larvae fed on artificial diet containing the recombinant ChiA (Rao et al., 2004) or on transgenic plants (Corrado et al., 2008). These adverse effects on larval development well agreed with the apparent delamination and perforation observed in enzyme-treated PMs (Rao et al., 2004), and corroborated the notion that PM has a primary physiological role in the compartmentalization and recirculation of digestive enzymes, as proposed by Terra (reviewed in: Terra, 2001; Terra and Ferreira, 2005), essential for the full exploitation of dietary compounds.

Thus, the availability of transgenic plants expressing two genes with mild but significant effects, potentially able to interact in a synergistic way, to enhance gut absorption, stimulated the idea of generating hybrids, using them as parental lines. This not only to test experimentally a new combination of insecticide molecules, but also to validate a delivery strategy per os of toxic molecules targeting haemocoele receptors, which, even though already proposed with promising results (Wang et al., 2005; Arakane and Muthukrishnan, 2010), has never been thoroughly investigated.

The stronger detrimental effect on growth and survival recorded for larvae reared on the hybrid tobacco line (Fig. 2, Table 2) indicates that a positive interaction takes place between the two transgenes concurrently expressed in the same plant. The data generated by this experiment show that the hydrolytic activity of ChiA on the PM of tobacco budworm larvae enhances the permeation of TMOF molecules, increasing the hormone concentration in the ectoperitrophic space, in direct contact with the intestinal epithelium. The experiments performed in vitro demonstrate that the incubation of larval PM with ChiA extracted from transgenic tobacco does increase the diffusion of TMOF across the membrane to the ectoperitrophic compartment (Fig. 4). The chitinolytic effect was also observed in the PMs of larvae reared on the ChiA-expressing tobacco line, as demonstrated by the higher flux of the test molecule methylene blue through the isolated membranes (Fig. 3). This latter experiment directly demonstrates that feeding on transgenic plants is effective in disrupting the PM, and the results are comparable to those originally recorded in vitro (Rao et al., 2004). The enhanced TMOF concentration at the apical side of the intestinal epithelium due to the PM lesions increased TMOF flux through the epithelium, as corroborated by the more pronounced toxicity of the hybrid plants. Therefore, we looked for the presence of the peptide in the haemolymph. We expected different titres directly associated with the biological effects observed, although quite low, due to the poor permeability of this peptide across the lepidopteran midgut (Fiandra et al., 2009). But this was not the case, as TMOF was undetectable in all haemolymph samples analyzed. However, we cannot rule out that TMOF may be chemically modified after ingestion, attaining a different molecular mass.

The alteration of larval growth upon TMOF ingestion and, more pronouncedly, when hybrid tobacco genotypes were eaten (Table 2), clearly indicates that an increase of the haemolymphatic titre of TMOF is not necessary for the biological effects observed. This apparent contrast can be reasonably explained by taking into consideration the specific biological features of this peptide. According to the model described by Borovsky (2003), TMOF produced from Aedes aegypti gene (Aea-TMOF) and fed to mosquito larvae, affects the normal growth and survival of the insects by inhibiting trypsin synthesis in midgut cells, after its binding to gut receptors on the haemocoele side of the tissue (Borovsky et al., 1994). In a recent study on Spodoptera littoralis larvae, the presence of Aea-TMOF receptors on the basolateral membrane of midgut cells has been hypothesized (Lemeire et al., 2008). The effect of ingested and injected Aea-TMOF on trypsin biosynthesis (Nauen et al., 2001) and on the growth of H. virescens larvae (Tortiglione et al., 2002, 2003) also suggests the presence of a TMOF-like hormone in Lepidoptera, and, therefore, of receptors similar to those identified in mosquitoes. In the present study we show that FITC-TMOF crosses H. virescens larval midgut by diffusion through the paracellular pathway (Fig. 5A), as in B. mori (Fiandra et al., 2009). A specific binding of TMOF to the basolateral membrane of the enterocytes of lepidopteran larvae has not yet been described. According to our results, we can reasonably surmise that, as soon as FITC-TMOF reaches the intercellular spaces, it binds to well defined sites on the basolateral membrane of the intestinal cells (Fig. 5B, C), as suggested by the numerous fluorescent spots clearly visible in the confocal
images. Overall, based on the experimental data we gathered so far, we can assume that ingested TMOF molecules can pass more freely across the damaged PM, reaching a higher concentration in the ectoperitrophic space; this allows a more rapid diffusion along the septate junction, that determines higher concentrations of TMOF, of TMOF-like bioactive molecules, in the microenvironment where the putative receptors are located, with obvious negative consequences on trypsin biosynthesis.

In conclusion, this study directly demonstrates that chitinases, besides being used as biopesticides, can be profitably exploited to compromise the PM permeability and, when delivered in tandem with other peptide/protein toxins, to enhance their gut absorption rates. This significantly contributes to the development of innovative delivery strategies of biopesticides, by enriching the toolkit that biotechnology can use in the continuous effort towards a more effective exploitation of toxin biodiversity for sustainable insect control.

Acknowledgments

The experimental work reported in this paper has been supported by the Italian Ministry of University and Research (PRIN 2008 – 2008FBIPR5 – to FP, national coordinator).

References